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ABSTRACT

A Real-Time Algorithm For Integrating Differential Satellite and Inertial

Navigation Information During Helicopter Approach

by

Ty Hoang

iv

A real-time, high-rate precision navigation Kalma_ filter algorithm is developed and

analyzed. This Navigation algorithm blends various navigation data collected during

terminal area approach of an instrumented helicopter. Navigation data collected include

helicopter position and velocity from a global position system in differential mode (DGPS)

as well as helicopter velocity and attitude from an inertial navigation system (INS). The

goal of the Navigation algorithm is to increase the DGPS accuracy while producing

navigational data at the 64 Hertz INS update rate. It is important to note that while the data

was post flight processed, the Navigation algorithm was designed for real-time analysis.

The design of the Navigation algofithrn resulted in a nine-state Kalman filter. The

Kalman filter's state matrix contains position, velocity, and velocity bias components. The

filter updates positional readings with DGPS position, INS velocity, and velocity bias

information. In addition, the filter incorporates a sporadic data rejection scheme. This

relatively simple model met and exceeded the ten meter absolute positional requirement.

The Navigation algorithm results were compared with truth data derived from a laser

tracker. The helicopter flight profile included terminal glideslope angles of 3, 6, and 9

degrees. Two flight segments extracted during each terminal approach was used to evaluate

the Navigation algorithm. The first segment recorded small dynamic maneuver in

the lateral plane while motion in the vertical plane was recorded by the second segment. The

longitudinal, lateral, and vertical averaged positional accuracies for all three glideslope

approaches are as follows (mean _+two standard deviations in meters): longitudinal (-0.03 _+

1.41), lateral (-1.29 _+2.36), and vertical (-0.76 _+2.05).
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CHAPTER 1

INTRODUCTION

Previous W0rk_

Considerable attention has been given to the integration of inertial navigation

systems (INS) and the differential global positioning systems (DGPS) via the Kalman filter

to provide precision navigation information. Work has been done on both fixed-wing [1-3]

and rotary wing aircraft [4-7] using precision (P) and course acquisition (C/A) code.

DGPS research at NASA Ames Research Center was initiated in the early 1980's using a

Sikorsky SH-3G helicopter. The objective of the tests was to evaluate the use of DGPS to

support helicopter terminal approach operations.

The helicopter was equipped with an early research DGPS system. Final approach

positioning accuracy was 5.2 + 8.0 meters (mean + 2or) laterally and 5.0 _+4.0 m vertically

with radar altimeter enhancement. Since then, commercial GPS receivers have made

significant improvements in positional accuracy. A recent NASA rotary wing project using

commercial DGPS yield the following non real-time result during final approach.

Navigation accuracy resulted in -0.79 + 2.74 m laterally and -2.03 + 3.54 m vertically [4].

Currently, NASA Ames Research Center and the U.S. Army Aeroflightdynamics

Directorate are developing a research rotorcraft, the Rotorcraft-Aircrew Systems Concepts

Airborne Laboratory (RASCAL). The RASCAL's UH-60A Black Hawk helicopter was

used as the flight test vehicle which will be modified in stages to support flight research of

advanced guidance, control and pilot display programs. Among the requirements of these

programs is to provide navigational information that has a minimum of 10 meter absolute

accuracy with a sample rote of 20 Hz [8]. It is this navigation requirement that the current

thesis sets out to address.



Problem DefinifiQrL

The purpose of this research is to provide a real-time navigation algorithm

integrating DGPS and INS navigation data. The goal is to design a simple algorithm that

would not tax the performance of the onboard computer, thereby displaying timely and

accurate readings. Real-time implies that computational time requirements are less than

clock time during program execution. Although work accomplished by Kaufi-nann [4]

meets RASCAL's positional requirement, it encotmtered two important short comings: 1)

the DGPS update rate was only at 2 Hz and 2) the DGPS time-lag was not implemented in

real-time. The current navigation algorithm addresses and resolves both short comings

encountered in Kaufmann's research, in addition to providing real-time positional updates.

2



CHAPTER 2

FLIGHT TEST DATA COLLECTION

Test Equipment and Material

To satisfy RASCAL's navigation requirement, a C/A-code global positioning system

with differential upload capability was installed on the UH-60A. The contribution of these

two components makes a differential global positioning system (DGPS). An additional

ground-based differential uplink GPS system was located at a pre-surveyed site. The data

from the DGPS receiver and navigation information from the inertial navigation system

(INS) was sent to the onboard Data Acquisition Computer (DAC). The DAC collects GPS

position data at 2 Hz and INS Euler angle and velocity data at 64 Hz.

The flight tests were conducted at Crows Landing located approximately 50 miles

east of the Moffett Field Naval Air Station. Data acquisition was divided into two major

systems: airborne and ground-based. The airborne system includes the RASCAL UH-60A

helicopter which was equipped with an Ashtech Model XII 12 channel C/A code GPS

receiver, a Maxon/Ashtech SM 3010 VHF telemetry uplink receiver, a Litton LN-93 ring

laser gyro inertial navigation system (barometric altimeter aided), a laser reflector on each

side of the fuselage, and an 80486 data acquisition computer. Figure 2.1 shows the flight

test vehicle with laser, GPS, and differential uplink placements. A schematic of the airborne

system integration is shown in Figure 2.2.

GPS

- ", ,"_r_,;

_c'roR _ LrpLINK
(ONE ON EACH SIDH) / _'[ENNA

Figure2.1 UH-60A RASCAL FlightTestHelicopter[4]
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The ground-based system consists of two components. The fh'st component

includes the same Ashtech GPS receiver and a Maxon/Ashtech telemetry uplink transmitter

providing the differential correction. The second component, a laser tracker system located

at Crows Landing NAS provides precision truth data. The two components of the ground-

based systems are illustrated in Figure 2.3

GPS UPLINK
ANTENNA ANTENNA

Differential Uplink Transmitter

I LASER [

TRACKINGl

DATA I

Figure 2.3

L_] DATA II RECORDER

Laser Tracker

Ground Based Systems [4]

Bouncing off the reflector mounted on the side of the helicopter, the laser tracker

provides precise range, azimuth, and elevation truth data at 100 Hz. Laser range accuracy is

nominally + 0.3 m out to approximately 9 km while azimuth and elevation accuracy are

nominally + 0.2 mrack Altogether, DGPS data is collected at 2 Hz, INS data at 64 Hz, and

laser data at 100 Hz.



Flight Te_t Profile

The flight test helicopter collects data by flying in a rectangular pattern.

5

Figure 2.4

illustrates the pattern as seen from above Runway 35 at Crows Landing. Starting at the Aim

Point (AP), the helicopter flies crosswind, downwind, around the base and up the fial

approach segment to finish the flight prone. Five important locations are identified on the

figure. Data collection is initiated at approximately 9450 meters (X-axis) down of the AP.

At the Initial Approach Fix (IAF) point, the helicopter is on altitude, on course, and on

speed. The helicopter then intercepts the appropriate glideslope at the Final Approach Fix

(FAF) and descends toward the AP. At the AP, the helicopter arrests its rate of descent,

levels off, and flies crosswind. Data collection is terminated about 2200 meters after the

AP. Afterward, the helicopter flies downwind to complete the run and restarts the process.

The AP is the origin of the runway coordinate system (RCS), which has the X-axis

(longitudinal) pointing along the runway centerline with the Y-axis (lateral) pointing right of

runway and the Z-axis (vertical) pointing clown, normal to the runway. The length of the

Base segment is 1852 meters.

9450 m Downwind

_I _ 175° 2220 m_ _

[] I

IAF FAF | X

Vg

Note: all values indicate X distances

Figure 2.4

Final Approach

Flight Test Profile at Crows Landing Runway 35

Compared to Figure 2.4, a laser data representation of the base and final approach

segment is plotted in Figure 2.5. The IAF and FAF points are located at -9960 and -5560

meters respectively along the X axis. The AP is located at the origin of the figure.
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_ath between the IAF and AP point is composed of two maneuvers. The

xaight and level" approach from the IAF to the FAF point, as shown in

_cent portion is carried out between the FAF and AP point. This project

&ard 3 degree approach as we//as various other glidesloN angles

tee). By holding the distance between the IAF and FAF constant

ad level flight segment, each glideslope angle had its unique approach

• and 9 degree glideslopes, the approach altitudes are 340, 640, and 910

Once again, the descent segment as recorded by the laser tracker is

"', ,.. - - ...,T
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Figure 2.6 Vertical Descent Profile
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Figure 2.7 Sample Laser Vertical Descent Profile - 6 ° Glideslope

Unlike the ground track profile, the vertical descent profile is plotted against time

instead of position to show a better representation of the level flight segment Starting the

descent around 600 m, the figure represents a 6 degree approach glideslope. With reference

to the Figure 2.5, the turn from the Base to Final Approach segment occurs between 40 and

60 seconds. Although the plots show data from the Base segment up to the AP, the

algorithm ana/yzes data only from the IAF to the AP locations.



CHAPTER 3

FLIGHT DATA REDUCTION AND VERIFICATION

Data Reduction

During flight test, three sets of data were recorded for analysis: laser, INS and

DGPS. The Navigation algorithm was established to provide positional information. To

validate the Navigation data, it was compared to a laser derived "Truth" data. Truth data is

obtained via the Truth algorithm. The performance of the Navigation model was determined

by calculating the deviations between the Navigation and Truth data.

The Truth algorithm merges laser and INS data to reduce noise and synchronizes

laser data at 100 Hz to INS's 64 Hz update rate. The Navigation algorithm integrates the

airborne system's INS and DGPS data. The data are presented to the algorithms in the

RCS reference flame. A segment of a typical ground track and vertical descent profile is

graphed in Figures 3.1 and 3.2. Note that the positions are plotted against a common Irig B

ILrne stamp The solid line represents raw laser data and the dashed line represents DGPS

data.

While Figures 3.1 and 3.2 show the raw data, Figures 3.3 and 3.4 display the

reduced data in the form of the Truth and Navigation data. The solid line represents Truth

data and the dashed line is the Navigation data. Compared to the raw data, the reduced data

correlates very well. In addition, a time-lag update correction has been factored into the

Navigation algorithm. This is most apparent when comparing the peak time locations

between the raw and reduced data. Note the reduction in spike amplitude in the reduced

data plots. The following sections present the procedures requffed to reduce data such as

that in Figures 3.1-3.2 to Figures 3.3-3.4. In addition, both source codes are available in

Appendix A and B. Codes are written in Matlab script format [9]. Every effort has been

made to keep the design of the algorithm simple, in addition to providing precise, high rate

positional information.
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Analysis of the Navigation Data

INS Data Reduction

A common time source, Irig B time, was used by both the airbome and ground-

based systems. In addition, the INS data set required a considerable amount of matrix

transformation before it could be used by the Kalman filter. The transformations were

necessary to supply the Kalman filter with Irig B time (ms), yaw angle (degree), azimuth

angle (degree), X velocity (m/s), Y velocity(m/s), and Z velocity (m/s) in the runway

coordinate system. Converting INS velocities into the RCS reference frame required the

transformations in Equation 3.1. Note that the INS velocity vector Grins) for each axis is

represented by a 3 by 1 matrix. The velocity data recorded by the INU is in the platform

reference flame, which has the X-axis oriented North, Y-axis pointing West, both rotated by

the wander angle, and the Z-axis pointing up. Recall that the RCS reference frame has the

X-axis parallel to the runway, Y-axis pointing right and Z-axis pointing down.

11

Vrcs= t_pwuj[Orcs1[CPw ] wu]

[Xins 1
Vins = Yins

Zins

(3.1)

rcs

pwu

nwu

ins

= RCS frame, Parallel, East and Down into runway

= Parallel, West and Up frame

= North, West and Up frame

= Platform frame, North, West (rotated by wander angle)-and Up

c,.nwu
In Equation 3.1, vms is the transformation matrix of the INU platform into the

North, West and up reference flame. This transformation is shown in Equation 3.2, where

ot is defined as the difference between the platform azimuth angle and the yaw angle (in

radians). The value of the o_angle is calculated with every INS update.
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[cos(a) -sin(o:) i]C'nwu [ mo(
v_ns = S 00 COS(C0

0

a = platform azimuth angle - yaw angle

(3.2)

pwu
The Cnwu, matrix in Equation 3.3 transforms the helicopter to a system parallel m

the runway. This time the transformation rotates about the wander angle, ¢. The wander

angle is defined as the angle between the runway X-axis and true North. The wander angle

was recorded at 10.099 degree. Note that C is analyzed in radians.

[cos(c) -sin(c) !1
Cnw u = s C) cos(C)

0

¢ = 10.099degree

(3.3)

The final transformation brings the INS velocities into the runway coordinate

system. This simple transformation (Equation 3.4) rotates the Y-axis and Z-axis 180

degrees.

Cpw u = -1

0 -

The order of these transformations are crucial in providing correct data for processing by

the Kalman filter.

(3.4)

DGPS Data Reduction

DGPS data was recorded in the Earth-Centered Earth Fixed (ECEF) reference

frame. This axis system has the Z-axis pointing from the center of the earth through the

North Pole, the X-axis through the Greenwich prime meridian at the equator and the Y-axis
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orthogonallyrotated(seeFigure3.5). DGPSmeasurementsincludeIrig B time(ms),X, Y,

andZ positions(m) anddifferentialX, Y, andZvelocities(m/s).

Thefirst steptransformsthe WGS-84 geodetic coordinates of the Aim Point to the

ECEF reference frame [4]. The graphical representation of the relationship between the

WGS-84 ellipsoid and the ECEF reference frame is shown in Figure 3.5. The geodetic

height, h represents the length of the ellipsoidal normal from the surface of the eUipsoid to

the point P (say the Aim Point). The geodetic latitude, _pis the angle between the ellipsoidal

normal and the equator. The geodetic longitude, 7_defines the angle between two meridional

planes oriented counter-clockwise from the ECEF's X axis.

Prime

North [ WGS-84 Ellipsoid

Pole | I

P

I

Equator

Xcef

Figure 3.5

I

WGS-84 Ellipsoid and ECEF Reference Frame

The Aim Point can now be transform into the ECEF reference frame by the

relationship shown in Equation 3.5. The radius of the earth is defined as N (Equation 3.6)

and e is the eccentricity of the earth ellipsoid of evolution (Equation 3.7). In Equation 3.7, a

and b represent the semi-major and semi-minor axis (in meters) of the earth ellipsoid of

evolution respectively.
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Notethattheq_and_,areanalyzedin radians.FollowingtheECEFreferenceconvention,

hasavalueof-121.1082725degrees.

-APxece f"

APYecef

APzecef

(N + h)cos(cp) eos(_) ]

= | (N+ h)cos(q,)sin(;_)[
L(N(1 - e 2) + h)sin(cp)J

(3.5)

N (3.6)

2(a ab) (a-b) 2e= 2
a

(3.7)

a = 6378137.0 m

b = 6356752.3141 m

cp= 37.41335361 degree

= -121.1082725 degree

h = 12.4 m

With the location of the Aim Point calculated in the ECEF flame, the distance

between the airborne GPS receiver antenna and the Aim Point can be determined. Equation

3.8 displays this simple calculation.

r'fiJ(ecef I IAntennaxeeef ] IAPxecef"

 XY ca/=
. AT"ecef A [.Antennazecef ] k-APzecef

(3.8)

The next process takes the GPS receiver antenna position in the ECEF frame and

transforms it into the RCS reference flame. The transformation is outlined in Equations

3.9-3.12.



-Antennaxrcs] [AXecef]

= ["ecef J
Antermayrcs _ /_o_/
Antennazrcs J k AT'ecef J

rcs
The Cecef matrix transforms ECEF data into RCS reference flame.

re= l r,.vcv1
Cecef = t-vcvj ["_ecefJ

15

(3.9)

(3.10)

¢,._VCV
The "-'ecef matrix brings ECEF coordinates into the Vehicle-Carried Vertical (VCV)

coordinate system. VCV has positive X oriented towards True North, positive Y in True

East, and positive Z pointing down, normal to the runway, q_and _ were defined previously.

VCV is transformed into the RCS system via the C rcs matrix. The True Heading (H) ofvvcv

Runway 35 is 10.099 degrees.

-sin(q>)cos(_,.)

cVdVf =[ -Sin(_L)

L-cos(q>)cos( )
-sin(q>)sin(_)cos0,) co,q>) ]

- cos(q>) sin(;_) - sin(q>).]

(3.11)

I cos(H) sin(H) i]
Cvc v = s (H) cos(H)

0

(3.12)

The DGPS positions and differentially derived velocities are transformed from the ECEF to

the RCS reference flame via Equation 3.13.

Xrcs = Cecef [Xecef] , Xrcs = Cecef

One last transformation is required before the data is to be processed by the Kalman filter.

In the RCS reference frame, the helicopter's GPS antenna is translated to the INU location

through Equations 3.14-3.15. The location of the INU was selected as the origin of the

helicopter.



inu
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Ix sI r ntenna cs1-/ ntenna  s/-
Zgps [.Antennazrcs.]

I-11. 74115]

-- _'_o_a,_on- GPS_oc._on= | 0.8128! (3.15)
/ !

[_-3.0861 .]

Equation 3.14 produces the vital navigation information that the Kalman filter

requires to predict the next positional estimate. Note that the units in Equation 3.15 are in

meters. More details on component locations are available in Appendix C. This entire

process fi:om Equations 3.1-3.14 is repeated for each INS and DGPS update, up to 64

times a second.

Data Manipulation

After the appropriate transformations, the Navigation algorithm checks for and reject

sporadic data. The data sets are then sent to the Kalman filter where INS and DGPS data

are merged The Kalman filter provides navigational position and velocity estimates, at a

much higher rate.

Analysis of the Truth Dam

INS Data Reduction

See "Analysis of the Navigation Data-INS Data Reduction" in the previous section.

Laser Data Reduction

Laser data is the simplest of the three data sets to analyze. Data collected include

Idg B time (ms), X, Y, and Z positions (m) in the RCS frame. The laser reflector was

transformed once, from the starboard side reflector location to the INU. Appendix C

provides more detail and the location of each components. Although a laser reflector is

situated on each side of the helicopter, the translation to the INU was only made for the
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starboardreflector. Duetotimeconstraint,analysisof theport reflectorwasnotexamined.

Theproblemof reflectorambiguitywasbroughtupby Kaufmann[4], whichthisalgorithm

partiallyaddresses.Chapter5providesmoredetailandresults.

Data Manipulation

The first procedure requires synchronization of the INS and laser data sets via the

Irig B time stamp. When I.rig B time matches laser data is interpolated to match INS dam

rate. This is required since the INS operates at 64 Hz while the laser operates at 100 Hz.

The algorithm used a linear interpolation routine. The data sets then filters out and reject

sporadic data. The INS and laser data sets are now suitable for input into the Kalman filter.

Data Verification and Selection

After the proper transformations into the RCS system, each data set is visually

inspected for data consistency. The criteria for selecting the sample data sets includes:

1) a complete data set with minimal data drop-outs 2) a flight profile with small dynamic

maneuvers and 3) a flight path representative of other data sets.

A complete data set is defined as a sample which contain INS, DGPS, and laser data,

all synchronized to the common/rig B time. For this analysis, only small dynamic

maneuvers are examined. Highly dynamic maneuvers are not analyzed since the

investigation only concentrated on helicopter final approach maneuvers. Lastly, the sample

data set selected for analysis was representative of the other data sets.

Although the algorithm is designed to handle sporadic data measurement, data set

with excessive data drop-out were not analyzed. Figures 3.6-3.7 show a sample 3 degree

laser data set that was not analyzed in its entirety due to excessive data drop-out. Because

the drop-out occurred at the beginning of the approach and the rest of the data set met all the

criteria stated above, this particular sample was analyzed. Again, the algorithm only analyze

data between the IAF and AP locations.
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Both figures show a substantial amount of laser data drop-out between -10000 and

-9000 meters in the X position. The plot in Figure 3.6 should have made a smooth

continuous loop joining the two end points (between 300-500 m in the Y axis) instead of the

discontinuous jump. Figure 3.7 shows the corresponding vertical discontinuity as a jagged

spike (between -250 and -310 m). The figures also illustrate sporadic data captured by the

laser tracker. At about -3500 m (X axis, Figure 3.6), a major spike can be seen. The data

spike deviates significantly from the zero Y position in the ground track profile.

The vertical spike is obvious, showing a rapid drop instead of a continuous descent

profile. This spike was rejected as a sporadic data point. Figure 3.8 plots a blown up

segment of Figure 3.6, showing the small dynamic maneuver experienced during this flight.

Note the noise (small spikes) characteristics recorded by this laser system. This segment of

the run met all three of the data selection criteria mentioned previously and was analyzed.
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Figure 3.8 Sample Laser Ground Track Profile Showing Small Dynamic Maneuvers



CHAPTER 4

OVERVIEW AND DESIGN OF THE KALMAN FILTER

Kalman Filter Theory

The Kalman filter is one of many methods available for discrete time analysis and a

standard technique used to process data with noise. It allows measurements to be processed

in real-time. The filter can also integrate a redundancy of measurement data from a variety

of sources. In addition, it carries an estimate of the measurements with every measurement

update, al/owing for the rejection of sporadic measurement data. The filter allows for the

integration and update of non-synchronous measurements between the different sources.

The Kalman filter used in this thesis is similar in design and notation to that of

Brown & Hwang [10]. The Kalman filter is comprised of two components; the State and

Measurement models. They are defined respectively below in Equations 4.1 and 4.2.

where:

x/c =

,I>/c=

Wk

_k

x/c+l = _/c xk + w/c (4.1)

Zk = Hk Xk + Vk (4.2)

( n x 1 ) process state vector at time t/c.

( n x n ) matrix relating x/c to Xk+ 1 in the absence of a forcing

function. (If xk is a sample of continuous process, (:I:)/Cis the state

transition matrix.)

( n x 1 ) a vector assumed to be white (uncorrelated) sequence with

know covariance structure.

( m x 1 ) vector measurement at time t/c.

( m x n ) matrix giving ideal noiseless relation between the -

measurement and state vector at time t/c.

( m x 1 ) measurement error, assumed to be white sequence with

known covariance structure and uncorrelated with the w k sequence.

)

20
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Step1:
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Thecovariancematricesfor wk and vk vectors, are given in Equations 4.3 - 4.5. Qk is the

covariance smacture of w k (state) and R k is the covariance structure for vk (measurement).

The values for Qk and Rk are usually supplied by the hardware manufacturer or are

assumed. The subscript "k" represents current time.

E[wkw]" ] = ' (4.3)
, i_:k

E[vkvT] = {Rk , i=k
, i ¢: k (4.4)

E[wkv r ] = 0 , for all k and i (4.5)

The Kalman filter has four basic steps (see below). The first step calculates the

Kalman gain matrix, Kk, the matrix that minimizes the mean square estimation error. In

Step 2, the state measurement estimate (_k) is updated with the calculated Kk. The

covariance matrix, (Pk) associated with the optimal estimate can now be computed in Step 3.

In Step 4, the state and covadance matrix are both projected ahead (k+l) and fed back into

Step 1 with the next available update. A fifth step, Step M is a modified procedure

to reject sporadic data.

Calculate Kalman gain.

Kk Pk T Pk T -1= H k (H k H k + R k)

Step 2: Update state measurement estimate.

i k = i k + Kk(z k -H k i_)

Step 3: Update error covariance.

_ Pk = (I-Kk I-Ik)Pk

Step 4: Project state and covariance ahead.

Pk+l T= dakPk_k + Qk

Step M: Erroneous positional data rejection.

I -Izk-:_k >30m
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A figure borrowed from Brown & Hwang [10] and duplicated in Figure 4.1 shows

how the Kalman filter loop is formed. Note that the Kalman loop is initialized with prior

state and error covariance estimates.

Project ahead:

ik+l = q_kik

Pk+l =d_kPk *T +Qk

Enter prior estimate Xk and

its error covariances P_

Compute Kalman gain:

K k = p_" H T (H k Vk H T + Rk) -1

Compute error covariance
for update estimate:

Pk = (I - K k Hk)P _

Update estimate with

measurement z k •

i k =_k + Kk(z k -H k ik)

Figure 4.1 Kalman Filter Loop

While Figure 4.1 represents the basic Kalman filter loop, the dashed box in Figure

4.2 signifies the modification made to the basic Kalman filter. In the basic configuration,

output from Step 1, (S1) goes directly into Step 2 ($2) for processing.

Measurement

- Input

KALM_ FILTER BLOCK

_ UpdateReject i S Estimate
Measurement [

Compute[ I UpdateGain ] Covariance

$1___ S_4
Project State

and Covariance

Estimate

Output

Figure 4.2 Modified Kalman Logical Loop
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Thecriteriafor positionalmeasurementrejectionisstraightforward. If the

differencebetweenthemeasurementandestimatedKalmanpositionalvalueisgreaterthana

fixedvalue(30meters,StepM), themeasurementis rejectedandthefilter isupdatedwith

theestimatedKalmanvalue. An incrementaldifferencegreaterthan30metersis sufficient

torejectthedataduringanapproachtolandingmaneuver.Highlydynamicmaneuversare

notexpected.Thus data not rejected via this criteria are processed by the filter. The 30

meter cut off value was heuristically derived. It is important not to make the rejection value

too small, since this has the possibility of rejecting good but noisy data. This simple

rejection criteria reduces computation time.

The INS velocity profile was assumed to vary slowly relative to the 64 Hz sample

rate. Therefore, higher order dynamics are not necessary in the Kalman filter

implementation. This reduces the number of states. The Kaiman state equations were then

decoupled into individual axis. By treating the axis independently, the algorithm was easier

to code and modify. Execution time for each axis was reduced by solving a simple 3-by-3

matrix inversion. A graphical representation showing the integration of INS and DGPS

informationby the Kalman filter is depicted in Figure 4.3. The diagram represents dam

being processed for one axis. Note that position and velocity outputs from the Kalman

filter are both at 64 Hz update rate.

Differential Global

Positioning System
(DGPS)

Accuracy < I0 m

Inertial Navigation
System (INS)

Accuracy drift of
1 nm/hr

xk _ Time-LagXk Update

2 Hz

Xk

X/°n I KalmanFilter
_tk

2 Hz

64 Hz

Xk

Xk

64 Hz

Figure 4.3 System Block Diagram of the Navigation Filter
,i
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The DGPS system is accurate to within 10 meters while the INS system has an

accuracy drift of one nautical miles per hour. This DGPS unit supplies both position and

derived velocity data at 2 Hz. INS velocity is supplied at 64 Hz. This particular DGPS unit

had an inherent time-lag of 0.494 second which was incorporated in the algorithm to

provide the Kalman filter with the most accurate measurement reading. Incorporation of the

time-lag update (xkm) made a significant improvement in the performance of the algorithm.

The Navigation filter corrected this time-lag by updating the modified DGPS

position with current DGPS position plus an averaged, integrated INS velocity calculated

since the last update. The time-lag update formula is shown in Equation 4.6.

ZV ins
Xlon = Xgps + Atgps (4.6)N

Atgps = 0.494 seconds

While Figure 4.3 pictured an example of data being processed for one axis, Figure

4.4 shows the integration of all three axes in the algorithm flow diagram. The data

initialization and data rejection routine are also included in this algorithm flow diagram_

Measurements

"-I._l Initialization J

es

Update Test Filter

__ Time-LagUpdate V q_ Rejecti°nTest

4

q_ Time-Lag q_Update _'-- RejectiOnTest

4

Figure 4.4 Algorithm Flow Diagram
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Notethat initialization occurred only once, at the beginning of the nm. Data rejection

testing begins with the next available measurement reading and before every measurement

update.

Desi_ of the Navigation Filter

The Navigation algorithm blends INS with DGPS measurements to produce

navigational data. Simplicity in the design of the Navigation Kalman filter is a prime goal.

This resulted in a nine state Kalman filter model, three states for each axis. By decoupling

the equations (axis), the algorithm solves the three sets of filters sequentially. Input data

include INS velocity which is derived from accelerometers, DGPS position and DGPS

velocity derived from differential positions. Table 4.1 describes the state and measurement

model used in the analysis of the Navigation filter. All measurements are in meters.

Position =

Table 4.1

State Model
The Nine State Navigation Filter

Measurement Model

Xk + 1 = ¢bkXk + Wk
where

I Position

x_:= | Velocity
/

[Velocity Bias

"Xins -- Xgps"

Velocity = , Velocity Bias, = Yins-C[gps

2i,_ - 2gp,

(4) 0 0 1!E(wkwT) =[ : (0.31) 2 00 0.52) 2

zk = HkX k + v k

[_ XgPs t

z/c = Xins

ins - Xgps

7(0.31)2 0

E(Vk vT) = (0.30) 2

_k = I

0

At = 1/64 sec

0 0

0 0 (0.91) 2

Hk = 1

0
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The state vector, Xkincludes the position, velocity, and velocity bias states. The

incorporation of the velocity bias state was an attempt to reduce the velocity error due to

drift and to control the performance of the barometric altimeter damped vertical axis. The

_k matrix shows that position is updated by both the INS velocity and the velocity bias

states. Note that At is 64th of a second, the INS data rate. As each DGPS and INS data are

captured, the states are computed and projected ahead via the _k matrix. Values for the

covariance matrices E(wkwrD and E(vkvrk) are estimated from empirical data or provided

by manufacturer specifications. The zk vector captures measurement data. For simplicity,

the I-I matrix is represented by the identity matrix.

Desi_ of the Truth Filter

The design of the Truth filter is very similar to that of the Navigation filter. The

Truth filter integrates 64th Hz INS and 100 Hz laser data. The Truth filter synchronizes

laser and INS measurement data and smoothes out laser data. The Truth filter is simpler in

design than the Navigation filter. Laser position and INS velocity make up the state vector.

Once again the axes are analyzed independently and are then sequentially processed.

Descriptions for the six state Truth filter are presented in Table 4.2. Here, the _k matrix

updates position with only INS velocity.

Table 4.2 The Six State Truth Filter

State Model Measurement Model

Xk + 1 = _kXk + Wk Zk = I-IkX k + v k

"Position]

xk = VelocityJ

7(0.15)2 0 lE(wkw_') = 0 (0.31) 2

IXlaser l
Zk =

Xins

---:T 0
Ilk :[0 1]



CHAPTER 5

NAVIGATION ALGORITHM RESULTS

The Navigation Kalman filter integration of DGPS and INS data was conducted for

the sample 3, 6, and 9 degree flights. The positional output of the navigation filter was

compared with the laser Iracker derived Truth data. The result of the sample 6 degree flight

profile is plotted in Figures 5.1 and 5.2. These figures show a portion of the level and

descent segments of flight. The ground track and vertical descent figures are representative

of the other 3 and 9 degree approaches. The high correlation between the longitudinal and

lateral positions characterizes the ground track profile. Truth data is represented by a solid

line while Navigation data is represented by a dashed line.

6O

100
-8500

Figure 5.1

ITruth I
Nay. m m I

I

-8000 -7500 -7000 -6500 -6000

X Position (m)

Representative Navigation and Truth Ground Track Profile
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Figure 5.2 Representative Navigation and Truth Vertical Descent Profile

A characteristic of the vertical descent profile is the small bias error between the Navigation

and Truth data. The vertical bias error is attributed to the general characteristic of the GPS

system where the vertical axis is the least accurate [7].

The 3 degree positional histories of the difference (Delta) between the Navigation

and Truth filters are shown in Figures 5.3-5.5. The figures points out a common trend in

all three axes. At the initialization of the filters, errors greater than 4 m were calculated.

During the initialization period, the filters were trying to converge the errors by producing a

more accurate state estimator. As the system gradually converged, the errors stabilized to +

3 meters of its mean value. On average, the system stabilized after 30-40 seconds. The

error reduction in two sigma standard deviation is significant after convergence. This trend

is a/so consistent with the 6 and 9 degree error differences.
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ThenavigationsolutionshowsahighervarianceatX positionslessthan-1000m,for

thelongitudinalandverticalerrors.Within thisrange,thehelicopteris arrestingits vertical

rateof descentandlevelingoff neartheAim Point. The filter tries to incorporate this

dynamic maneuver into its prediction of the next state estimate. The slight increase in error

is expected since the state model did not incorporate an acceleration component. This is

most apparent in the vertical axis of Figure 5.5.

Vertical ErrorsBetween Navigation and Truth Data

01 , : ....

I
"1 ..... : ........... : .......... i.......... : .......... ":........... : .......... : .......... J.......

-2 .....i.................. i..........;..........!........"

-8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 0
X Position (m)

Figure 5.5 3 ° Vertical Errors

The lateral errors of Figure 5.4 converge from the initial spike at -8500 meter, like

the longitudinal and vertical results. However, the figure shows a distinct spike occttrring at

-75013 meters with a shift in mean error of approximately one meter. At the corresponding

X position in Figure 5.6, the aircraft is performing a level turn in the lateral plane. This

maneuver can cause a possible ambiguity in laser reflector readings. Two more spikes

occurring at -5000 and -3500 meters (in Figure 5.4) also correlate to the other level

maneuvers of Figure 5.6.
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The statistical results for the sample 3, 6, and 9 degree frights are summarized in

Figure 5.7. Figure 5.7 shows the mean and 2e standard deviation of the differences

between the Navigation and Truth data.
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Figure 5.7 Statistical Results Showing Mean + 2c for 3 °, 6 ° and 9 ° Flights
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Thestatisticalresultsareaculminationof both the level and dynamic descent

portions of flight. In Figure 5.7, the 3 degree results show the smallest standard deviation

spread. The 2(r spread widened slightly with steeper glideslope angle. The increase in

spread can be attributed to the fact that during the 6 and 9 degree approaches, the aircraft

was performing a higher dynamic maneuver. When comparing errors among the level

portion of flight, the 2(r spread of the steeper approaches closely resembles that of the 3

degree profile. Overall, the results are well within RASCAL's 10 meter absolute positional

requirement.

Table 5.1 compares the sample 3, 6, and 9 degree approaches with the

corresponding time history flights from Kaufmann [4]. At first glance, the numbers

indicate only a small difference between the two analytical methods. However, a direct

comparison between the two results is difficult to make since the methods are fundamentally

very different. But, the proximity of the results indicates that the Kalman filter can produce

results within the same order of magnitude as the time history method.

Table 5.1 Navigation Filter and Time Histo_ Results - 3, 6, and 9 De_ee Samples

Axis

X

Time History

Mean (m) I

Glideslope Angle

Flight Numbers

3 Degree

3042-015 t

3092-314 tt

Navi[ation Filter Method*

Mean (m) 2a (m)

-0.27 + 1.08

-0.70 + 1.16

-2.68 _+ 1.28

-2.42 + 1.46

-1.31 + 2.72

-1.09

Y 0.26 + 3.25

Z -2.80 + 2.25

6 Degree X -4.98 + 1.83

3092-04 t y -0.47 + 1.06

3092-604 tt Z 0.00 + 1.97 0.23 + 1.35

X 2.59

Y -1.42

Z

9 Degree

3092-018 ¢

3092-917 tt 0.40

+ 1.68

+ 2.75

0.22

t Current flight reference

* Real-time analysis

0.13

Method**

2a (m)

+1.71

+ 2.23

+ 1.36

+1.51+ 2.88 0.13

tt Kaufmann's cross reference flight number
** Post flight analysis
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Thefundamentaldifferencesbetweenthetwoanalyticalmethodsare:real-time

capability,time-lagupdate,andINS dataupdate.RecallthattheNavigationalgorithm

analyzesdatain real-timeandincludesanembedded,time-lagadvancementscheme.In

contrast,thetimehistorymethodadvancestheDGPSpositionsto matchthelaserpositions

duringpostflight analysis.Afterwards,theI.rigB time-lagfactoris calculated.A/so,time

historyanalysisusesno INSinformation.Without INS data,thetimehistorymethodcan

notbe.. implementedonareal-"timedynamic airbornesystem.However,thetimehistory

resultsdo showthebestpositionalaccuracyachievablewith thisDGPSsystem.These

differencesmakeadirectcomparisonbetweenthetwomethodsdifficult.



CHAPTER 6

SUMMARY AND RECOMMENDATIONS

Summary_

A real-time, high-rote precision Navigation algorithm has been developed and

analyzed. The algorithm was designed to integrate time-Lagged DGPS position and velocity

data with high-rate INS velocity and attitude information via the Kalman filter. Result, the

Navigation algorithm met and exceeded RASCAL's 10 meter absolute positional accuracy

and 20 Hz update requirements. The algorithm demonstrated absolute precision navigation

performance within 4.5 meters in all three axes and produced positional solution at a 64 Hz

update rate.

The solutions surpassed RASCAL's positional requirement by 50% and the update

rate by 200%. A reLatively simple nine state Kalman filter model accomplished all this.

Furthermore, the Kalman state matrix did not include an acceleration measurement model.

The algorithm also accounted for errors caused by ambiguous and sporadic data readings.

Additional number of states could be use to improve filter performance but doing so would

compromise the simplicity of the algorithm design.

These results were achieved by strictly adhering to the data selection criteria. This

data criteria allowed for testing of small dynamic maneuvers only. The logical extension

would be to test the algorithm with more dynamic maneuvers. However, high dynamic

maneuvers should be avoided since the algorithm was designed to provide navigation dam

during approach to landing only. This flight profile does not expect to experience such

demanding maneuvers.

34
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Recommendations

The algorithm used thus far has not been optimized for positional accuracy. Recall

that the state matrix used only DGPS position, INS velocity, and velocity bias states. To

increase positional accuracy, the velocity bias state may be replaced with an acceleration

state or a better method may be employed on the velocity bias state itself. To check the

robusmess of the filter, less stringent data set should be tested. Different amount of data

drop-outs should suffice. In addition, attention to detail during the data collection is crucial.

This is especially true with Irig B time synchronization between the different data sets.

Recalibration of the INU before each flight is also crucial in providing consistent data.
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APPENDIX A

NAVIGATION ALGORITHM WRITTEN IN MATLAB CODE

The following flights met all data set requirements and were analyzed by this algorithm:

3 ° • FSN-01901

6 ° : FSN-3092-011

9 ° - FSN-01904

d/. .R d/. " t_.g_ , _n _t _t ._t' u d_ _.;£' AL J_ .g .g _. d_ ._ At .g uAt ' d/. AJ. AL " .g

%# #
% # PROJECT: NAVIGATION KAI/VghN FILTER #

% # INTEGRATION OF DGPS & INS INFORMATION #

%3 #
% # #
% # WRITTEN BY: TY HOANG #

% # AERONAUTICAL ENGINEERING DEPARTMENT #

% # CAL POLY STATE UNIVERSITY - SAN LUIS OBISPO #

% # FEBRUARY 18 1994 _

% # #
% # In fulfillment of a Master's Thesis at CAL POLY #

% # #
% # CAL POLY ADVISOR: DR. DANIEL J. BIEZAD, #

% # AERONAUTICAL ENGINEERING DEPARTMENT "

% # NASA AM_S ADVISOR: MR. HARRY N. SWENSON, #

% # NAVIGATION AND CONTROLS BRANCH #

% # #
% ####.##.##_#########.############################################.._##
%

% Objective: To imp!emen_ a Ka!man filter integrating GPS and INS data, to

% produce positional information. Output has GPS accuracy with high rate

% of update, 64 Hertz.

% INS data received at 64Hz and GPS at 2Hz

file KF Navigation = ('KFNavigation.m');

% Assumptions:

% Guessed Initial Value of: Q & R covariances

% Initialized Values: x_prior, Pprior, tau, del_time
% Constant CalculatedMatrix: phi, H

% Constant velocity during delta time segment

% First data point is not a wild point

% NOTE: insdata is in English Units

% gpsdata is in SI Units

tic % Engage time counter
c!c % clear command window

clear_on = input ('Clear memory before starting script? << YES >> or [< NO >]

', 's')"

if

clear_on='y'Iclear_on='Y'Iclear_on='yes'Iclear_on='YES'Iclear_on=,Yes,
clear

end
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echo off

echo on = input ('_rn echo on? << YES >> or [< NO >] ', 's');

if ise_mpty (echo_on) =! ]echo__on=' n' Jecho__on='N' iecho_on='No' lecho_on='NO'
echo off

else

echo on

end

%

##=###_==#_= INITIALIZING CONSTANTS _=#_=_=_=_#=====##==_#

% Input Parameters

gps_rate = 2 ; fprintf('GPS data rate at 2 Hz.\n') % In Hertz:

ins rate = 64; fprintf('INS data rate at 64 Hz.\n\n')

half = ins_rate/gps__rate;

% Setting Constants' initial values: Length(ft), Time (ms)

de! time = 1/ins rate;

--t mgps e = 0.494;

ft_m = 0.3048;

in2ft = !/12;

% Conversion from feet to meters

% Conversion from inches to feet

cg_location =[359.50; 0.00; 258.75]*in2ft*ft_m:

qps_iocation =[761.00: 0.00; 334.00]*in2ft*ft2m;

inu location =[298.75; 32.0: 212.50]*in2ft*ft2m;

laser location=[25i.00; 56.0: 206.50]*in2ft*ft2m;

% CG depends on config.

% GPS antenna

% Ac<ual IN_ location

% .Right Reflector

% Coordinate G?S from tail boom to _ location;

gps_inu = inu_location - gps_location; % In feet & good sign convention

% qps_inu = [298.75-761.00; 32.0-0.00; 2!2.50-334.00]*in2ft*ft2m;

% gps_inu = [ - ; + ; - ]; % For proper sign convention when subtracted
%

% ###################### INITIALIZING INPUT FILES #######################
% Default raw data file formatted columns:

% Irig B Time, Roll, Pitch, Yaw, Platform Azimuth Angle, Vx, Vy, Vz.
% Or modified data file:

% Irig B Time, Vx, Vy, Vz

fprintf('\nINS raw data file MUST contain ALL the following data \n')
fprintf('(In column format)\n')

fprintf('[Iriq_B, Yaw, Planform Azimuth Angle, Vx ins, Vy_ins, Vz ins]\n\n')
fprintf('NOTE: Columns do not have to be in this _pecific orderkn_n')

ins_data_file = input('Enter INS data file: ','s')"

while isempty(ins data file)=l

ins_data_file --inpu_('Enter INS data file: ','s');
end

fprintf('inLoading INS data ..... ininin')

eval(['load ', ins data file]);

eval(['INS = ', ins data file, ';']);

[rins,cins] = size (_NS);-- % sizing row by column data

fprintf('INS data is in Geodetic Coordinate System \n')

fprintf(' (Longitude, Latitude, andAltitude) in')

fprintf('Time: milliseconds, Angle: degree, Velocity: feet/second

fprintf('\nDEFAULT loads the following column format : in')

in')
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GU = input('Enter Column Number for "GPS X Velocity"

GV = input('Enter Column Number for "GPS Y Velocity"

G-W = input('Enter Column Number for "GPS Z Velocity"
gps_raw(:,!) = (GPS(:,GB)) ;

gps__raw(:,2) = (GPS(:,GX)) ;

gps_raw(:,3) = (GPS(:,GY)):

gps_raw(:,4) = (GPS(:,GZ)) ;

gps_raw(:,5) = (GPS(:,GU)) ;

gps_raw(:,6) = (GPS(:,GV));

gps_raw(:,7) = (GPS(:,_W));
end

:'):

:');

:');

if GC='y' JGC='yes' IGC='Y' JGC='YES' lise-mpty (GC)=I

gps_raw(:,i) = (GPS(:,I)); % Irig B did not use GPS time and Age
gps_raw(:,2:7) = (GPS(:,4:9));
% Did not use PDOP

end

[rgps_raw, c_ps_raw] = size (gps_raw) ;

printme=input ('Save Ka!man, gps, covariance, or Bias files? [< YES >] or << NO
>> , . . ., s ),

if printme='y'Iprintme='Y'fprintme='YES'Iprin_me=,yes,lprintme=,Yes,j
isempty(printme)=!

savekal = input('Save Kalman output to file? [< YES >] or << NO >> ','s');

if savekal='y'lsavekal_'Y'Isaveka!='yes'lsaveka!=,YES,lsavekal____,Yes,I
is_pty(prin_me)_l

ka!out = input('Enter name for Ka!man filter output file: ','s');
while isempty(kalout)=l

ks/out = input('Enter name for Ka!man filter output file: ','s'):
end

KALout = i:

else

KALout = 0;

end

savegps = input('Save GPS output to file? [< YES >] or << NO >> ' 's')"
if ' '

savegps_'y'Isavegps='Y'Isavegps_,yes,fsavegps_,v_S, isavegps_,Yes, jis_pty
(savegps)_l "-

gpsout = input('Enter name for transformed GPS file: ','s');
while isempty(gpsout)=l

gpsout = input('Enter name for transformed GPS file: ','s');
end

GPSout = i;

else

GPSout = 0;
end

savecov = input('Save Covariances to file? [< YES >] or << NO >> ','s')"
if

savecov------,y, lsaveco_,Y, isaveco_,yes,jsaveco_,YES,jsaveco_,Yes,lisempty
(savecov)_-i

covout = input('Enter name for Covariance output file: ','s');
while isempty(covout)=l

covout = input('Enter name for Covariance output file: ','s');
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end

if prme='y'Jprme='Y'fprme='YES'Jprme='yes'Iprme='Yes'

inout=input('Enter name for transfo__med Vins-Vrcs output file: ','s');

while isemptyiinout)-----i

inout=input('Enter name for transformed Vins-Vrcs output file: ','s');
end

end

% Preallocate of memory location to increase processing speed

% Zeros(row, colununs); 6 because of six column output.

insdata = zeros(rins, 6);

C__wu_nwu = [cos(phi),-sin(phi),0; sin(phi),cos(phi),0; 0,0, i];

C_rcs__w_ = [I,0,0; 0,-!,0; 0,0,-i];

fprintf('\nPerforming Coordinate Transform of INS from Local Level to RCS

system\n')

insdata(:,l) = raw ins(:,l); % Needs no transformation for time

for i = !:rins

% alpha = azimuth angle - true heading: (in radians)

alpha = raw ins(i,3) - raw ins(i,2);

C_nwu_ins= [cos (alpha), -sin_alpha), 0; sin (alpha), cos (alpha), 0; 0, 0, i] ;

V__rcs=C_rcs_pwu*C pwu nwu*C nwu ins* [raw__ins (i, 4) ;raw ins (i, 5) ;raw ins(i,6)];
insdata(i,2:4) = V rcs T .*--ft2_m; -- --

if prme='y' ]prme='Y' ]prme='YES' ]prme=--'yes ' Jprme-----'Yes'

fprintf(inout, '%8.0f ',insdata(i,!) )

fprintf(inout, '%!0.5f ',insdata(i,2:3) )

fprintf (inout, '%10.5fin', insdata (i, 4) )

end % End IF prme Loop

end % End For i Loop

% Coordinate Transform of GPS from ECEF to RCS

% Variable convention:

% C r e = transformation matrix from ecef to rcs system
% C re=C rv* Cve

% r = rcs, runway coordinates

% e = earth center earth fixed

% v = vehicle carried vertical (true north)

%

a = 6378137.0; % Semi-major axis of earth ellipsoid (6378137 m)

b = 6356752.3141; % Semi-minor axis of earth ellipsoid (m)

h = 12.4: % Geodetic height of Runway 35 Aim Point (m)

e = sqrt ( (2* (a-b)/a)- ((a-b) ^2/(a^2) ) ) ; % Eccentricity of earth ellipsoid

SI = 37.41335361/i80.0"pi; % Geodetic latitude of Runway Aim Point (tad)

LM = -121.I082725/!80.0"pi; % Geodetic longitude of Runway Aim Point (tad)

N = a/(sqfrt(l-(e_*e*sin(SI)*sin(SI)))); % Radius of curvature of ellipsoid

% AP ecef is the relationship between geodetic & ECEF at Crows Landing, now in
SI u_its

AP_ecef= [ (N+h) *cos (SI) *cos (LM) : iN+h) *cos (SI) *sin (LM) ; iN* (l-

e'e) +h) *sin (SI) ] ;

C v e = [-sin (SI) *cos (LM), -sin (SI) *sin (I/M), cos (Sl) ;-sin (I/M), cos (!24), 0; -

cos (SI) *cos (I/M), -cos (SI) *sin (LM), -sin (SI) ] ;

C r v = [cos(phi), sin(phi), 0; -sin(phi), cos(phi), 0: 0, 0, I];
C r e = C r v* Cv e;
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fprintf('\nPerforming Coordinate Transform of GPS from VCV to RCS system\n')

gpsdata = zeros(rcrps, 7); % 7 for 7 columns output style.

gpsdata(:,!) = gps_raw(:,!); % Needs no transformation for time

for j = l:rgps

del_wgs = [gps_raw (j, 2) ;gps_raw (j, 3) ;gps_raw (j, 4) ] -AP ecef;

gps_rcs = C r e * de!_wgs; % Now gpsdata is _n rcs frame

gpsV_rcs = C r e * [gps_raw(j,5); gps_raw(j,6); gps_raw(j,7)];

gpsdata(j,2:4) = gps_rcs'; % GPS positions

gpsdata(j,5:7) = gpsV_rcs(l:3,!)'; % Vxrcs, Vyrcs, Vzrcs

if GPSout = !

fprintf(gpsout, '%8.0f ',gpsdata(j,!) )

fprintf(gpsout, '%10.5f ',gpsdata(j,2:6) )

fprintf(gpsout, '%i0.5fkn',gpsdata(j,7) )

end % End IF GPSout Loop

end % End FOR j Loop

% Irig B

% Xgps, Ygps, Zgps, Vx, Vy
% Vz

% Transferring GPS at tail to INI/ location before entering Kalman filter

fprintf('And from GPS antenna to INU !ocation.\n')

for b = l:rgps

gpsdata(b, 2:4) = gpsdata(b,2:4) - gps_inu';
end

% #=##=#####_#=#_### INITIALIZING _ VABJ.ABLES ##==########=#====_=_#

fprintf('\nInitalizinq Kalman Variables now ..... \n')

% Initializing Matrices % format [ii 12 13; 21 22 23; ...]
g = I0.0;

err = [g*3.0; g*3.0; g*3.0]; % Wild data, prcnt change from previous

fprintf('knDATA Filter now at +/-%6.3f meters.kn',err)

Q = [(4.0)^2, 0, 0; 0, (l*ft2m)^2, 0: 0, 0, (5*ft2m)^2];

% Init Measure Coy, Q(I,I) is already in meters.

H = [i, 0, 0; 0, I, 0; 0, 0, I]; % H = Ideal noiseless matrix between z & x

R = [(l.0*ft2m)^2, 0, 0; 0, (3*ft2m)^2, 0; 0, 0, (3*ft_m)^2]; %
% Initial: State Covariance

IM = [!, 0, 0; 0, i, 0; 0, 0, i]; % Identity Matrix

Kx = [I, 0, 0; 0, i, 0: 0, 0, I]; % Initial Guess: Kalman Gain Value

Ky = [i, 0, 0; 0, i, 0; 0, 0, I];

Kz = [i, 0, 0; 0, I, 0; 0, 0, I];

Px_2rior = [i, I, I; I, I, I; I, I, i]; % Prior estimate of Xerror P

Py_prior = [!, I, i; I, I, i; I, i, !];

Pz_prior = [i, i, I; I, i, I; i, I, I];

phi_Matrix = [!, de!__time, del_time; 0, I, 0; 0, 0, i];

% Search for a common Irig B time before starting Ka]_man Filter Routine
ins_start = 2: % Start INS at 2nd row of data

gps_start = i;

for start = l:rgps

if insdata (start, i) ----gpsdata (gps_start, i) Iinsdata (start, i)

<gpsdata (gps_start, I)

ins start = start:
break;

else
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cps_start = gps_start + i;

end % End IF insdata... Loop

end % End FOR start Loop

if start = rgps

fprintf('\n\n !!!!![!!!!!!!!!!!!!!! WARNING !!!!!!!!!!!!!!!!!![!!!\n')

fprintf(' \nINS and GPS Irig B tLmes are not within the same time frame\n')

fprintf ( '********************** Goshawk Terminated ******_*********\n' )

break; end;

end

% Prior estimate of X state = [Xtrue_Dosition; Vtrue_ve!ocity; V_bias]

x D__o__:_ = [gpsdata(gps_start, 2) +insdata (ins start, 2)*gps_time;

ins_ata (ins_start, 2) ; (insdata (ins_start, 2) -gpsdata (gps_start, 5) ) ] ;

y2rior = [gpsdata(gps_start, 3) +insdata (ins start, 3) *gps_time;

insdata (ins_start, 3) ; (insdata (ins start, 3) -gpsdata (qps_sta__, 6) ) ] ;

z_Drior = [gpsdata (gps_start, 4) +_nsdata (ins_start, 4) *gps_time;

insdata (ins_start, 4) ; (insdata (ins_start, 4) -gpsdata (qps_start, 7) ) ] ;
%

% ###_#_############## ENTERING KA/24AN FILTER LOOP ###_####==_##_#=_=####

fprintf('knEntering KaLman Filter Loop ..... \n')

% Equations working with
% State :

% Measurement :

% Where :

%

%

%

%

% KaLme_n Gain:

% Update Estimate:
% Error Covariance:

% Project Ahead:

%

%

m= 0;

gps x total = 0:

gps y_total = 0;

gps z total = 0;

qc = gps_start;

gps X total = 0;

gps_Y_total = 0;

gps_Z_total = 0;

half time = i;

Vx sum = 0;

Vy_sum = 0;

Vz sum = 0;

X_average = 0;

Y_average = 0:

Z_average = 0;

X count = I;

Y count = I;

Z count = I;

X--skip_data_ = 2;

Y_skip_data = 2;

Z_skip_data = 2;

Pins (i, I) = gpsdata (gps_start, 2) :

Pins (2,1) = gpsdata(gps_start,3) ;

X(k+l) = Phi(k) * X(k) + W(k)

Z(k) = H(k) * X(k) + V(k)

X(k) = [True_osition; True velocity]

W(k) = [Qqps 0; 0 Qinu]

Z (k) = [Position_gps; Velocity_inu]

V(k) = [Rgps; Rinu]

K = P * H' * (H * P * H' + R)^(-I)

X_upest = X_rior + K * (Z - H * _Drior)

P UDeSt = (IM - K * H) * P_rior;
X--_prior = phi_Matrix * X_upest;

P_prior = phi_Matrix * P_upest * phi_Matrix' + Q;

% Counters for GPS data advancement

% Total # GPS ignored

% Running total of gps-ins lag time

% Initial INS position
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Pins (3, !) = gpsdata (gps_start, 4) ;
%

% Entering Ka!man Loop

K ka!m = zeros(0.8*rins,13); % Output has 13 columns

for p = ins s_a_:rins
re=m+ 17

% STEP ONE: Compute Kalman Gain

Kx = Px-prior * H' * (H * Px-prior * H' + R) ^(-i);

Ky = Py_prior * H' * (H * Py_prior * H' + R)^(-I);

Kz = Pz_prior * H' * (H * Pz-prior * H' + R)^(-I);

% Test to ensure not using wild data in next z measurement

if half time = half & qc < rgps

qc = qc + i; % Read next gps data or incoming data

if abs (gpsdata (qc, 2) + (Vx_sum/X_count+gpsdata (qc, 5) )/2*gps_time-

x-prior(!,l)) > err(l,!)

fprintf('p = %8.0f, Irig = %8.0f :',p, insdata(p,l))

fprintf('X Diff= %9.4f\n',abs(gpsdata(qc,2)+X__average-x prior(!,l)))

X_skip_data = I; % Update ins measurements only

gps x to_al = gps x total + I; % Keep track of total points deleted
else

X_skip_data = 2; % Status flag, good measurements
end

if abs (gpsdata (qc, 3) + (Vy_sum/Y_count+gpsdata (qc, 6) )/2*gps_time-

y-prior(!,l)) > err(2,1)

fprintf('p = %8.0f, Irig = %8.0f :',p, insdata(p,!))

fprintf ( 'Y Diff = %9.4f\n', abs (gpsdata (qc, 3) +Y_average-y-prior (!, I) ))

Y_skip_data = I; % Update ins measurements only

gps_y_total = gps_y_tota! + !; % Keep track of total points deleted
else

Y_skip_data = 2; % Status flag, good measurements
end

if abs (gpsdata (qc, 4) + (Vz_sum/Z_count+gpsdata (qc, 7) )/2*gps_time-

z-prior(!,l)) > err(3,1)

fprintf('p = %8.0f, Irig = %8.0f :',p, insdata(p,l))

fprintf ( 'Z Diff = %9.4f\n', abs (gpsdata (qc, 4) +Z average-z_prior (!, !) ))

Z_skip_data = i; % Update ins measurements only

gps z total = gps z total + I; % Keep track of total points deleted
else

Z_skip_data = 2; % Status flag, good measurements
end

half time = I;

else _ Else half_time Loop

% Reset ins/gps time sync

X_skip_data = I;

Y_skip_data = i:

Z_skip_data = 1;

half time = half time + i;

end %--End IF half--time Loop

% Update with INS Position estimate

% Incremental sync time counter

% STEP TWO: Update estimate with measurement z

% Equation: # upest = #-prior + K# * (z# - H * #-prior)
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if X_skip_data = 2 % Update X and use good measurement data

X_average = ( Vx sum/X_count + gpsdata(qc,5) )/2 * gps_time;

zx = [gpsdata(qc.2)+X_average; insdata(p, 2); (insdata(p,2)-

gpsdata (qc, 5) ) ] ;

X count = 0;

vx sum = 0;

else

zx = Ix_Prior(!,!); insdata (p, 2) ; x_prior (3,!)];
X count = X count + i;

Vx sum = Vx sum + insdata(p,2);

end

x_upest = x_mrior + Kx * (zx - H * x_mrior);

if Y_skip_data = 2 % Update Y and use good measurement data

Y_average = ( Vy_sum/Y_count + gpsdata(qc,6) )/2 * gps_time;

zy = [gpsdata(qc,3)+Y_average; insdata(p, 3); (insdata(p, 3)-

gpsdata (qc, 6) ) ] ;

Y count = 0;

V__sum = 0;
else

zy = [y_ _rior (!, l) ; insdata(p,3); y_prior(3,1)];

Y count = Y count + !;

V__sum = Vy_sum + insdata (p, 3) ;
end

y_upest = y_prior + Ky * (zy - H * y_prior);

if Z_skip_data = 2 % Update Z and use good measurement data

Z_average = ( Vz sum/Z_count + gpsdata(qc,7) )/2 * gps_time;

zz = [gpsdata(qc.4)+Z_average; insdata(p, 4) ; (insdata(p, 4) -

gpsdata (qc, 7) ) ] ;

Z count = 0;

Vz sum = 0;

else

zz = [z_prior(l,!); insdata(p,4); z-prior(3,1)];

Z count = Z count + i;

Vz_sum = Vz_sum + insdata(p, 4) ;
end

z_upest = z_prior + Kz * (zz - H * z-prior);

K_kalm(!) = insdata(p,!); % Irig B

K_kalm (2 :4 ) = x_upest '; % X_update, Vx_update, Vx_bias_update

K_kalm(5:7) = y_upest'; % Y_update, Vy_update, Vy_bias_update

K_kalm(8:10) = z_upest'; % Z_update, Vz_update, Vz_bias_update
K kalm(ll:13) = Pins';

P[ns(l,l) = Pins(!,l) + insdata (p, 2) * del time;

Pins(2,1) = Pins(2,!) + insdata (p, 3) * del time;

Pins(3,1) = Pins(3,1) + insd@_ta(p,4) * del time;

% STEP THREE: Compute Error Covariance for Updated Estimate

Px_upest = (IM - Kx * H) * Px-prior;

Py_upest = (IM - Ky * H) * Py_prior;

Pz_upest = (IM - Kz * H) * Pz_prior;

if

printme='y'Iprintme='Y'Iprintme='YES'Iprintme=.yes.lprintme=.Yes.]isempty
(printme)=l

if KALout -----1
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fprintf(ka!out,'%-7.0f ',K_ka!m(1) ) %INS Irig B
%X ins, X ka!man, Y ins, Y_kalman, Z ins
fpri--ntf (kaTout, '%-!0_4f ', K_ka!m (l!),K_kalm (2), K_ka7-m (12), K_ka!m (5),

K_ka 7_m (! 3 ))

fprintf(ka!out, '%-10.4f\n',K ka!m(8)) %Z_kalman
end

if COVout = 1

fprintf(covout,'%-8.0f ', K kalm(1) ) % Irig B

% Px_upest, Pvx_upest, Py_upest

fprintf (covout, '%-6.3f ', Px_upest (i, i), Px_upest (2, 2), Py_upest (!, I) )

% Pvy_upest, Pz_upest

fprintf (covout, '%-6.3f ', Py_upest (2, 2), Pz_upest (i, !) )

fprintf (covout, '%-6.3f\n',Pz_upest (2,2)) % Pvz_upest
end

if BIASout = 1

fprintf(biasout,' %-8.0f ', K_kaim(1) ) % Irig B

fprintf(biasout,' %-I0.4f ', zx(3,!), zy(3,!) )

% Vx_bias_update, Vy_bias_update

fprintf (biasout, ' %-10.4f\n', zz (3, !) ) % Vz_bias_update
end

end % End IF printme Loop

% STEEP FOUR: Project Ahead

x__rior = phi_Matrix * x_upest:

y_Drior = phi_Matrix * y_upest;

z_Drior = phi_Matrix * z__upest;

Px_rior = phi_Matrix * Px_upest * phi_Matrix' + Q;

Py_rior = phi_Matrix * Py_upest * phi_Matrix' + Q;

Pz_orior = phi_Matrix * Pz_upest * phi_Matrix' + Q;

end % End For p Loop

fprintf('\n')

fprintf('Tota! number of GPS X data omitted:

fprintf('Total number of GPS Y data omitted:

fprintf('Total number of GPS Z data omitted:

echo off

toc % Print time counter

end % End of script
%

%-5.0f points\n', gps_x_tota!)

%-5.0f points\n', gps y_tota!)

%-5.0f points\n', gps_z_total)

% ############################ END OF SCRIPT ############################
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APPENDIX B

TRUTH ALGORITHM WRITTEN IN MATLAB CODE

The fo//owing flights met all dam set requirements and were ana/yzed by this a/gonthm:

3 ° • FSN-01901

6 ° • FSN-3092-011

9 ° • FSN-01904

' .t_ /£ _ 4/.It, ' _" ' ./l ' ' '_ _ ' m._._.2.1 , _ i , .a.d,k//.._..ll..l/..._.l/.._d/.

% # #
% # PROJECT: TRUTH _ FILTER #

% # INT_-GRATION OF DGPS & LASER INFORbiATION #

% # #
% #

% # WRITTEN BY: TY HOANG

% # AERONAUTICAL ENGINEERING DEPARTMENT #

% # CAL POLY STATE UNIVERSITY - SAN LUIS OBISPO
% # FEBRUARY 18 1994

% #
7t

% # In fulfillment of a Master's Thesis at CAL POLY
ff

% # #
% # C_-L POLY ADVISOR: DR. DANIEL J. BIEZAD, #

% # AERONAUTICAL ENGINEERING DEPARTMENT "

% # NZ.SA AMES ADVISOR: MR. HARRY N. SWENSON, #

% # NAVIGATION AND CONTROLS BRANCH #

% # #
% #######################################################################
%

% Objective: To implement a Ka!man filter routine on laser and ins data, to
%

%

%

produce positional information. Output used as truth data and compared

to the positional information from the Navigation Ka!man Filter.
INS data received at 64Hz and LASER at !00 Hz

file KF Truth = ('KFTruth.m');

% Assumptions:

% Guessed Initial Value of: Q & R covariances

% Initialized Values: x_prior, P_/0rior, tau, de! time

% Constant Calculated Matrix: phi, H

% Constant velocity during flight and data gathering

% First data point is not a wild point

% NOTE: insdata is in English Units

% laser data is in SI Units

tic % Engage time counter

clc % clear command window

clear_on = input('C!ear memory before starting script? << YES >> or [< NO >]
', 's');

if

clear on='y'Iclea r on='Y'Icleam on='yes'Jclear on='YES'Jclear on='Yes'
cl_ar ....

end
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fprintf(' [Irig_B, Yaw, Pitch, Roll, Azimuth Angle, Vx_ins, Vy_ins,

Vz ins] \n' )

fprinZf('NOTE: Current code uses the following information \n')

fprintf (' [Irig_B, Yaw, Azimuth Angle, Vx_ins, Vy_ins, Vz_ins] \n\n')

IC = inDut('Use DEFAULT [< YES >] or << NO >> ','s');

if is_pty (IC) =i

IC = 'y' ;
end

fprintf('\nConve_ing INS data into SI Units ..... \n')

if IC='n'[IC='no'[IC='N'[IC='NO'

IBT = input('Enter Column Number for "INS Irig B time"

IYW = input('Enter Column Number for "INS Yaw Angle"

I_A = input ('Enter Column Number for "Azimuth Angle"

IVX = input('Enter Column Number for "INS X Velocity"

IVY. = input('Enter Column Number for "INS Y Velocity"

ZVZ = input('Enter Column Number for "INS Z Velocity"

raw ins(:,!) = INS(:,IBT);

raw--ins(:,2) = INS(:,IYW);

raw ins(:,3) = INS(:,LAA);

raw ins(:,4) = INS(:,IVX);

raw ins(:,5) = INS(:,IVY);

raw ins(:,6) = INS(:,IVZ) ;

end % End IF IC Loop

:');

:');

:');

:');

:'):

:'):

raw ins = zeros (tins, 6) ;

if IC='y'

raw ins(:,!) = INS(:,1);

raw--ins(:,2) = INS(:,2);

% raw ins(:,#) = INS(:,3:4);

raw_ins(:,3) = INS(:,5);

raw ins(:,4:6) = INS(:,6:8);

end % End IF IC Loop

% Irig

% Yaw

% Pitch, Roll : not used

% AzimuthAngie

% Vxins, Vyins, Vzins

laser data file = input('Enter LASER data file: ','s');

while isempty(laser data fi!e)_---I

laser_data_file --inpu_('Enter LASER data file: ','s');

end

fprintf('\nLoadingLASERdata ..... \n\n')

eval(['load ', laser data file]);

evaI(['LASER = ', laser_data_file, ';']);

[rlaser, claser] = size(LASER); % sizing row by column data

fprintf('LASER data is in Runway Coordinate System\n')

fprintf('...(Xposition, Yposition, and Zposition)\n')

fprintf('Time: milliseconds, Position: meters, Velocity: meters/second\n')

fprintf('knDEFAULT loads the following column format : \n')

fprintf('[Irig_B, Xlaser, Ylaser]\ n')

fprintf('NOTE: Current code uses the following information \n')

fprintf(' [Irig_B, Xlaser, Ylaser, Zlaser]\nkn')

LC = input('Use DEFAULT [< YES >] or << NO >> ','s');

if is_mpty(LC)=l

LC = 'y';
end
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laserdata = zeros (rlaser, 4) :

if LC='n' ILC='no' ILC='N' ILC='NO'

LB = input('Enter Column Number for "LASER Irig B time"

LX = input('Enter Column Number for "LASER X Position"

LY = input ('Enter Column Number for "LASER Y Position"

LZ = input('Enter Column Number for "LASER Z Position"

laserdata(:,!) = (LASER(:,LB));

laserdata(:,2) = (LASER(:,LX)) ;

!aserdata(:,3) = (LASER(:,LY)) ;

laserdata(:,4) = (LASER(:,LZ)) ;
end

:');

:');

:');

:');
% Laser data in SI Units

if LC='y' ILC='yes' ILC_-'Y' ILC='YES' lisempty (LC)=I

!aserdata(:,l) = (LASER(:,1)) ; % Irig B

!aserdata(:,2:4) = (LASER(:,2:4)); % Convert to English Units
end

% Making sure data are within range before further processing

if raw_ins(tins,!) < !aserdata (!, l) I laserdata(rlaser, l) < raw ins(l,l)

fprintf ( '\************************* WARNING *****************-i*****\** )

fprintf('Time stamps between the two file are out of range.ln')
fprintf ('Program TE_RMINATED, please try again... \n\n' )
break:

end

printme=input('Save Truth Laser/Kaiman file? [< -_S >] or << NO >> ' 's');
if isempty (printme) = 1

printme = 'y';
end

if printme_' y ' Iprinting' Y ' I printme_--- 'yes ' t printme_' YES ' Iprintme_--- 'Yes '

truth_X = input('Enter name of X axis Truth Laser/]Ka/xnan output file:
• 's') ;

while isempty (truth X)=I

truth X=input ('En[er name of X axis Truth Laser/Ka!man output file:
's') •• r

end

truth__Y = input('Enter name of Y axis Truth Laser/Kalman output file:
,'s');

while isempty (truth Y)=I

truth__Y=input('En_er name of Y axis Truth Laser/Kalman output file:
,'s');

end

truth_Z = input('Enter name of Z axis Truth Laser/Kalman output file:
, ,);• s

while isempty (truth Z)---_l

truth_Z=input ('En[er name of Z axis Truth Laser/Kalman output file:
's') -

end

end % End IF printme='Yes' Loop

i f printme_--- 'n ' Iprint_me= 'N ' Iprintme_ 'no ' Iprintme_- 'NO ' Iprintme= 'No '

fprintf('\nGeneric output files have been created: truthX out, truthY out,
and truthZ out. \n\n') -- --

eval(['!rm truthX out truthY out truthZ out'I)
t -o - -truth X = 'tru ut';

truth--Y = 'truthY--out ';

truth Z = 'truthZ out';
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print_me = 'y';
end

save_sync=input ('Save synchronized INS/LASER data to file? << YES >> or [< NO
>] ', 's');

if is_pty(save_sync) = 1

save_sync = 'non';
end

if save_sync-----'y'Isave_sync='Y'Isave_sync='yes'Isave_sync='YES'

save_sync = 'yes';

sync_out = input('Enter name of synchronized INS/iASER output file: ','s');

while isempty(sync_out)=l

sync_out = input('Enter name of synchronized INS/I_ER output file:
' 's');

end

end

%

% #=_=_==_#=##_##=### COORDINATE _NSFORMATIONS #_===###=#_==#===_=##_=

% Coordinate Transform of INS from VCV (Geodetic) to RCS

% Variable convention:

% C_nwu_ins = transformation matrix from ins to nwu system

% Conversion from V ins to V rcs:

% V_rcs = C_rcs_pwu * C_pwu nwu * C nwu ins * V ins;

% rcs = runway coordinate system (para!_el runwa--y, right, down)

% pwu = Parallel runway, West(left), Up system

% nwu = No.--th, West• Up system; also Local Level System

% ins = inertial navigation system, geodesic (!ong.,lat.,ait)
%

wander_angle = !0.099;

phi = wander_angle/180.0*pi;

% Degrees, wander angle

% Angle between True Noah and X rcs(rad)

% Read in ins data:

% First Transformation: From ins to nwu: C nwu ins * V ins = V nwu

% Second Transformation: From nwu to pwu: C_pwu_--nwu * V--nwu_ = V--_pwu

% Third Transformation: From ned to rcs: C_rcs_pwu * V Dwu = V rCS
% Translate than Rotate Coordinates

% Final Translation is from the GPS to INU location of aircraft.

% Preallocate of memory location to increase processing speed
insdata = zeros(0.8*rins, 4);

C_2wu_nwu = [cos(phi),-sin(phi),0; sin(phi),cos(phi),0; 0,0, I];
C rcs DWU = [I,0,0; 0,-I,0; 0,0,-i];

fprin_f('\nBerforming Coordinate Transform of INS from Local Level to RCS

system\n')

for i = l:rins

insdata (i, l) = raw ins(i,l); % Needs no transformation for time

% alpha = azimuth angle - true heading: (in radians)

alpha = raw ins(i,3) - raw ins(i,2);

C_nwu_ins= [cos (alpha), -sin (alpha), 0; sin (alpha), cos (alpha), 0; 0, 0, I] ;

V_rcs=C_rcs_pwu*C_pwu nwn*C_nwu_ins* [raw_ins (i, 4) ;raw ins (i, 5) ;raw ins (i, 6) ],
insdata(i,2:4) = V rcs' * ft2m; -- --

end % End For i Loop

% Synchronizing INS and LASER data and transforming LASER to INU location
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fprintf('\nSync_onizing INS and lASER data ..... \n')

syncdata = zeros(0.8*rlaser, 7);

entry = 2;

sync_row = 0;

if insdata(2,1) < laserdata (2,1)

while insdata (entry, i) < !aserdata (2, I)

entry = entry + I;
end

if insdata (entry, I) > !aserdata (2, I)

ent-_-y = entry - I; % To always make laser the larger time stamp
end

end

for lsrrow = 2:rlaser

% If laser and ins time matches, just print to file

while !aserdata(!srrow, l) = insdata(entry, l) & entry < rins

sync row = sync_row + I;

syncd, ata(sync_row,!:4) = insdata(entry, l:4);

syncdata(sync_row, 5:7) = laserdata(isrrow, 2:4);

entry = entry + !;

end % End WHILE laserdata... = ... Loop

% Interpolate Irig B time between ins and laser if times dont match

% Only laser time will be inte__poiated

% Calling intez-polation function ('interS.m' is a 'function' file)

% function = inter8(TL(i), TL(f), TI(n), X(i), X(f))

% TO=laser time, TI=ins time, i=initia!, f=final, n=now, X=Position

while iaserdata(!srrow, l) > insdata(entry, l) & entry < tins

sync_row = sync_row + I;

NOW (I, !) = reval ('inter8 ', !aserdata (isrrow-l, i), laserdata (isrrow, I),

insdata (entry, I), laserdata (isrrow-l, 2), laserdata (isrrow, 2) ) ;

NOW (2, !) =fevai ('interS', laserdata (isrrow-l, i), laserdata (isrrow, I),

insdata (entry, I), laserdata (isrrow-l, 3), laserdata (isrrow, 3) ) ;

NOW (3, i) = feva! ('inter8 ', laserdata (isrrow-i, i), laserdata (!srrow, I),

insdata (entry, I), laserdata (isrrow-l, 4), laserdata (isrrow, 4) ) ;

syncdata(sync_row, l:4) = insdata(entry, l:4);

syncdata(sync_row, 5:7) = NOW';

entry = entry + i:

end % End WHILE laserdata... > ... Loop

if sync_row <= rins

rhos = sync_row;
end

end % End FOR isrrow Loop

% sizing synchronized row by column data

[rsync, csync] = size(syncdata):
%

% Transferring RHS laser to INU location before entering Kalman filter

for b = l:rsync

syncdata(b, 5:7) = syncdata(b,5:7) - laser inu';
end

% Equations working with



%State: X(k+!) = Phi(k) * X(k) + W(k)
%Measur=_ment:Z(k) = H(k) * X(k) + V(k)
%X(k) = [Xtrue_position; Vtrue_velocity]

% W(k) = [Qlaser 0; 0 Qinu]

% Z(k) = [X!aser; Vinu]

% V(k) = [Riaser; Rinu]

Where:
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% %%%%%%%%%%%%%%%%%%%%%% Initializinq Constants %%%%%%%%%%%%%%%%%%%%%%
% Setting initial values: Length in feet, Time in seconds

q = !._.0: % Set as a criteria for wild data filter

err = [c'_.0"_ _ , g'3.0;c'3.0];_ % Wild data clearance, 3.5 for Xtra clearance

!err = [g'3.0; g_3.0; g*3.0]; % Laser wild data clearance in feet
ins raze = 64; % In Hertz

del--time = 1/ins rate;

ins_ount = 0; %--Total n_nber of data points skipped
!as x total = 0;

!as_y_total = 0;
!as z total = 0;

x skip_data = 0; % 0 is good initial data, 1 is bad initial data
Y_--skip_data = 0;

Z skid data = 0;

track-x !as = 0;

track_y_las = 0;

track z las = 0;

fprintf('\nFilter Bandwidth now at +/-%6.3f meters.\n',err)

% %%%%%%%%%%%%%%%%%% Initializing Kaiman Constants %%%%%%%%%%%%%%%%%%%
% Initializing Matrices

phi_Matrix = [I de!_time; 0 i];

Q = [(0.5_ft2m)^2 0; 0 (l*ft2m)^2]; % Initial Guess: Measurement Covariance
H = [i 0; 0 i]; % Ideal noiseless matrix between z & x

R = [(l*ft2m)^2, 0; 0, (0.3)^2]; % 1^2 Initial Guess: State Covariance
IM =[I 0 ; 0 i]; % Identity Matrix

Kx = [! 0; 0 i]; % Initial Guess: Ka!man Gain Value

Ky = [! 0; 0 I]; % Initial Guess: Kalman Gain Value

Kz = [! 0; 0 i]; % Initial Guess: Kalman Gain Value

Px prior = [I i; 1 i]; % Prior estimate of Xerror covariance

Py-prior = [I I; 1 i]; % Prior estimate of Xerror covariance

Pz_prior = [I I; 1 !]; % Prior estimate of Xerror covariance

x prior = [syncdata(l,5): syncdata(l,2)];

y_prior = [syncdata (I, 6) ; syncdata (i, 3) ] ;

z prior = [syncdata (I, 7) ; syncdata(l, 4) ] ;

% Set equal to laser data

Pins (!, !) = syncdata (!, 5) ;

Pins (2,1) = syncdata(l,6);

Pins (3,1) = syncdata (l, 7) :

% Set equal to laser data

xn = 0;

yn = 0;

zn = 0;

xk = 0;

yk = 0;

zk = 0;

%
Entering Kalman Loop
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% NOTE: output file format

% [Irig B, _insrcs, Vyupes, Yinsrcs, Yupest, Ylaser, Px, Pv]

kaloutx = zeros(.8*rsync, 8);

kaloutY = zeros(.8*rsync, 8);

kaloutZ = zeros(.8*rsync, 8);

fprintf('\nEntering Kalman Filter Loopkn')

for m = l:rhos

% STEP ONE: Compute Kalman Gain

Kx = Px__Drior * H' * (H * Px_prior * H' + R)^(-I);

Ky = Py_prior * H' * (H * Py_/Drior * H' + R)^(-I);

Kz = Pz__prior * H' * (H * Pz_prior * H' + R)^(-I);

xt = syncdata (m, 5 );

xw = X__Drior (l, l) ;

if abs(xt-xw) > err(l, i)

X_skip data = I;

las_x_total = !as_x_total + I;
else

X_skip_data = 0;
end

% Update ins measurements only
% Keep track of total points deleted

% Status flag, good measurements

!It = syncdata (m, 6 );

yw = y_prior(l,l);

if abs(yt-yw) > err(2,1)

Y_skip_data = 1;

las__v total = las_v_total + i;
else

Y_skip_data = 0;
end

% Update ins measurements only

% Keep track of total points deleted

% Status flag, good measurements

zt = syncdata(m, 7);

zw = z__Drior(l,l);

if abs(zt-zw) > err(3,1)

Z_skip_data = I; % Update ins measurements only
las_z_total = las_z_total + I; % Keep track of total points deleted

else

Z_skip_data = 0; % Status flag, good measurements
end

if m == 1

X_skip_data = 0;

Y_skip_data = 0;

Z_skip_data = 0;
end

% To ensure ist data is read as good measurement

% Determine Wild Laser Data for Output to file, this is for output purposes
% not used by code for Kalman analysis

% If wild data point is bad print last Wgood" data point.
if m > 1 & m < rhos -i

if abs (syncdata(m, 5)-syncdata(m-l, 5) ) > lerr(l, I)
xn = xn + i;

else

xn=0;
end
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xk = m- xn;

if abs(syncdata(m, 6)-syncdata(m-l,6)) > lerr(2,1)

yn :yn+ i;
else

yn=0;

end

yk = m -yn;

if abs(syncdata(m, 7)-syncdata(m-l,7)) > lerr(3,1)

zn : zn + i;

else

zn = 0;

end

zk = m - zn;

else

xk=m;

yk=m;

zk = m;

end

% STEP TWO: Update estimate with measurement z

if X_skip_data == 0 % Update and use good measurement data

zx = [syncdata(m, 5); syncdata(m, 2)]; % X axis
else

zx = [x_prior (l, l) ; syncdata(m, 2) ] ;
end

x_upest = x_prior + Kx * (zx - H * x_prior);

if Y_skip_data == 0 % Update and use good measurement data

zy = [syncdata(m, 6); syncdata(m, 3)]; % Y axis
else

zy = [y_prior (i, 1 ) ; syncdata (m, 3 )] ;
end

y_upest = y__prior + Ky * (zy - H * y_prior);

if Z_skip_data == 0 % Update and use good measurement data

zz = [syncdata(m, 7); syncdata(m, 4)]; % Z axis
else

zz = [z_Drior(l,l); syncdata(m, 4)];
end

z_upest = z_prior + Kz * (zz - H * z_prior);

% STEP THREE: Compute Error Covariance for Updated Estimate

Px_upest = (IM - Kx * H) * Px_prior;

Py_upest = (IM - Ky * H) * Py__prior;

Pz_upest = (IM - Kz * H) * Pz__Drior;

% Output in following column format:

% [Irig, Vxins, Vkalman, Xinsrcs, Xkalman, Xlaser, Px, PVx]

kaloutX (m, i) = syncdata (m, I) ;

kaloutX(m, 2:5) : [syncdata(m, 2), x_upest(2,1), Pins(l,l), x_upest(l,l)];

kaloutX(m, 6: 8) = [syncdata(xk, 5), Px_upest (I, i), Px_upest (2,2) ] ;

Pins(l,l) = Pins(l,l) + syncdata(m, 2) * del_time;

kaloutY(m,l) = syncdata(m,l);
. /



57

kaloutY(m, 2:5) = [syncdata(m, 3), y_upest (2, i), Pins(2, I), y_upest (I, i) ] ;

kaloutY(m, 6:8) = [syncdata(yk, 6), Py_upest(l,l), Py_upest(2,2)];
Pins(2,1) = Pins(2,1) + syncdata(m, 3) * del_time;

kaloutZ(m, i) = syncdata(m, i) ;

kaloutZ(m, 2:5) = [syncdata(m, 4), z_upest(2,1), Pins(3,1), z_upest(l,l)];

kaloutZ(m, 6:8) : [syncdata(zk, 7), Pz_upest(l,l), Pz_upest(2,2)];
Pins(3.!) = Pins(3,1) + syncdata(m, 4) * del time;

% STEP FOUR: Project Ahead

x_prior = phi_Matrix * x_upest;

y_prior = phi_Matrix * y_upest;

z_prior = phi_Matrix * z_upest;

Px__Drior = phi_Matrix * Px_upest * phi_Matrix, + Q;

Py__prior = phi_Matrix * Py_upest * phi_Matrix, + Q;

Pz_prior = phi_Matrix * Pz_upest * phi_Matrix' + Q;

end % End IF m Loop

fprintf ( '\nNumber of X LASER points thrown out :

fprintf ('\nNumber of Y LASER points thrown out:

fprintf (, \nNumber of Z LASER Points thrown out :

toc

%6gkn',las_x_total)

%6g\n',las__v_total)

%6g\n',las_z_total)

% [Irig, Vxins, Vkalman, Xinsrcs, Xka]_man, Xlaser, Px, PVx]

if printme == 'Y'Iprintme=='YES'Iprintme==,yes,lprintme==,y,
[rkalout,ckalout] = size(kaloutX);

for v : l:rkalout

flDrintf(truth_X,,%8.0f ',kaloutX(v,l))

fprintf(truth_X,,%10.5f ',kaloutX(v, 2:7))

fPrintf(truth_X,'%10.5f\n,,kaloutX(v, 8))

fPrintf(truth_Y,,%8.0f ',kaloutY(v,l))

fPrintf(truth_Y,,%10.5f ',kaloutY(v, 2:7))

flDrintf(truth_Y,'%10.5f\n,,kaloutY(v, 8))

fprint f (truth_Z, '%8.0f ', kaloutZ (v, I) )

fPrint f (truth_Z, '%10.5f ', kaloutZ (v, 2 :7) )

fPrintf (truth_z, ,%10.5fkn', kaloutZ (v, 8) )
end

end % End IF printme Loop

if save_sync == 'yes'

for j = l:rsync

fPrint f (sync_out, '%8.0f ', syncdata(j, i) }

fprint f (sync_out, '%10.5f ', syncdata (j, 2 :6) )

fprintf (sync_out, '%10.5f\n', syncdata (j, 7) )
end % End FOR Loop

end % End IF Loop
toc

end
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LOCATIONS OF NAVIGATION COMPONENTS

m

J _ButtLine Right Reflecti NS _ _A

!Left Reflecto

tenna

m

k

Waterline
E

F

Laser to INU

A

C

GPS to INU

B

Station, m (in) Buttline, m (in)

-- 0.6096 (24.0)

0.8128 (32.0)

E 1.2129 (47.75) --

F 11.7412 (462.25) --

Waterline, m (in)

O. 1524 (6.0)

3.0861 (121.5)
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